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PROBLEMS BY LEVEL AND TOPIC WITH 

FULLY EXPLAINED SOLUTIONS 
 

LEVEL 1: DIFFERENTIATION  

1. If 𝑓(𝑥) = 7𝑥4 + 𝑥 + 3𝜋 − sec 𝑥, then 𝑓′(𝑥) =  

(A) 28𝑥3 + 1 − sec 𝑥 tan 𝑥 

(B) 28𝑥3 + 1 + sec 𝑥 tan 𝑥 

(C) 28𝑥3 + 3 − sec 𝑥 tan 𝑥 

(D) 
7

5
𝑥5 +

𝑥2

2
+ 3𝜋𝑥 − ln|sec 𝑥 + tan 𝑥| 

Solution: 𝑓′(𝑥) = 28𝑥3 + 1 − sec 𝑥 tan 𝑥. This is choice (A). 

Notes: (1) If 𝑛 is any real number, then the derivative of 𝑥𝑛 is 𝑛𝑥𝑛−1.  

Symbolically, 
𝒅

𝒅𝒙
[𝒙𝒏] = 𝒏𝒙𝒏−𝟏.  

For example, 
𝑑

𝑑𝑥
[𝑥4] = 4𝑥3.  

As another example, 
𝑑

𝑑𝑥
[𝑥] =

𝑑

𝑑𝑥
[𝑥1] = 1𝑥0 = 1(1) = 1. 

(2) Of course it is worth just remembering that 
𝑑

𝑑𝑥
[𝑥] = 1. 

(3) The derivative of a constant is 0. A constant is just a real number. 

For example, 3𝜋 is a constant. So 
𝑑

𝑑𝑥
[3𝜋] = 0. 

(4) The derivative of a constant times a function is the constant times 
the derivative of the function. 

Symbolically, 
𝑑

𝑑𝑥
[𝑐𝑔(𝑥)] = 𝑐

𝑑

𝑑𝑥
[𝑔(𝑥)]. 

For example, 
𝑑

𝑑𝑥
[7𝑥4] = 7

𝑑

𝑑𝑥
[𝑥4] = 7 ⋅ 4𝑥3 = 28𝑥3. 
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(5) You should know the derivatives of the six basic trig functions: 

          
𝒅

𝒅𝒙
[𝐬𝐢𝐧 𝒙] =     𝐜𝐨𝐬 𝒙          

𝒅

𝒅𝒙
[𝐜𝐬𝐜 𝒙] = −𝐜𝐬𝐜 𝒙 𝐜𝐨𝐭 𝒙  

          
𝒅

𝒅𝒙
[𝐜𝐨𝐬 𝒙] = −𝐬𝐢𝐧 𝒙              

𝒅

𝒅𝒙
[𝐬𝐞𝐜 𝒙] =     𝐬𝐞𝐜 𝒙 𝐭𝐚𝐧 𝒙 

          
𝒅

𝒅𝒙
[𝐭𝐚𝐧𝒙] =     𝐬𝐞𝐜𝟐 𝒙               

𝒅

𝒅𝒙
[𝐜𝐨𝐭 𝒙] = −𝐜𝐬𝐜𝟐 𝒙     

(6) If 𝑔 and ℎ are functions, then (𝑔 + ℎ)′(𝑥) = 𝑔′(𝑥) + ℎ′(𝑥). 

In other words, when differentiating a sum, we can simply differentiate 
term by term. 

Similarly, (𝑔 − ℎ)′(𝑥) = 𝑔′(𝑥) − ℎ′(𝑥). 

(7) In the given problem we differentiate each of 𝑥4, 𝑥, 3𝜋 and sec 𝑥 
separately and then use notes (4) and (6) to write the final answer. 

2. If 𝑔(𝑥) =
𝑒4𝑥−4

4
− ln(𝑥2) + (2𝑥 − 1)

5

2, then 𝑔′(1) = 

(A) 1 

(B) 2 

(C) 3 

(D) 4 

Solution: 𝑔′(𝑥) = 𝑒4𝑥−4 −
2

𝑥
+ 5(2𝑥 − 1)

3

2.  

Therefore 𝑔′(1) = 1 − 2 + 5 = 4, choice (D). 

Notes: (1) The derivative of 𝑒𝑥 is 𝑒𝑥.  

Symbolically, 
𝑑

𝑑𝑥
[𝑒𝑥] = 𝑒𝑥 . 

(2) The derivative of ln 𝑥 is 
1

𝑥
 .  

Symbolically, 
𝑑

𝑑𝑥
[ln 𝑥] =

1

𝑥
 . 

(3) In this problem we need the chain rule which says the following: 

If f (𝑥) = (𝑔 ∘ ℎ)(𝑥) = 𝑔(ℎ(𝑥)) , then 

𝑓′(𝑥) = 𝑔′(ℎ(𝑥)) ⋅ ℎ′(𝑥) 
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For example, if 𝑓(𝑥) = ln(𝑥2), then 𝑓(𝑥) = 𝑔(ℎ(𝑥)) where 𝑔(𝑥) = ln 𝑥 

and ℎ(𝑥) = 𝑥2. So 𝑓′(𝑥) = 𝑔′(ℎ(𝑥)) ⋅ ℎ′(𝑥) =
1

𝑥2
⋅ 2𝑥 =

2

𝑥
. 

Similarly, we have 
𝑑

𝑑𝑥
[
𝑒4𝑥−4

4
] =

1

4
⋅  
𝑑

𝑑𝑥
[𝑒4𝑥−4] =

1

4
𝑒4𝑥−4 ⋅ 4 = 𝑒4𝑥−4, and 

𝑑

𝑑𝑥
[(2𝑥 − 1)

5

2] =
5

2
(2𝑥 − 1)

3

2(2) = 5(2𝑥 − 1)
3

2 . 

(4) As an alternative to using the chain rule to differentiate ln (𝑥2), we 

can rewrite ln (𝑥2) as 2 ln 𝑥. Then 
𝑑

𝑑𝑥
[2 ln 𝑥] =2

𝑑

𝑑𝑥
[ln 𝑥] =2 ⋅

1

𝑥
=

2

𝑥
 . 

See the first table in problem 3 for the rule of logarithms used here. 

(5) In the given problem we differentiate each of 
𝑒4𝑥−4

4
, ln(𝑥2), and 

(2𝑥 − 1)
5

2 separately and then use note (6) from problem 1 to write the 
final answer. 

(6) If we could use a calculator for this problem, we can compute 𝑔′(𝑥) 
at 𝑥 = 1 using our TI-84 calculator by first selecting nDeriv( (or pressing 
8) under the MATH menu, then typing the following: 

e^(4X – 4)/4 – ln(X^2) + (2X – 1)^(5/2), X, 1), 

and pressing ENTER. The display will show approximately 4.  

3. 
𝑑

𝑑𝑥
[
𝑥 ln 𝑒𝑥

5

6
] = 

(A) 6𝑥5 

(B) 𝑥5 

(C) 6𝑥5 + 𝑥6 

(D) 𝑥5 + 𝑥6 

Solution: ln 𝑒𝑥
5
= 𝑥5, so that 

𝑥 ln 𝑒𝑥
5

6
=

𝑥⋅𝑥5

6
=

1

6
𝑥6. Therefore we have 

𝑑

𝑑𝑥
[
𝑥 ln 𝑒𝑥

5

6
] =

𝑑

𝑑𝑥
[
1

6
𝑥6] =

1

6
⋅ 6𝑥5 = 𝑥5, choice (B). 

Notes: (1) 𝑓(𝑥) = log𝑒 𝑥 is called the natural logarithmic function and is 
usually abbreviated as 𝑓(𝑥) = ln 𝑥. 

(2) Here are two ways to simplify ln 𝑒𝑥
5
.  



 

15 

Method 1: Recall that ln 𝑒 = 1. We have ln 𝑒𝑥
5
= 𝑥5 ln 𝑒 = 𝑥5(1) = 𝑥5. 

Here we have used the last law in the following table: 

Laws of Logarithms: Here is a review of the basic laws of logarithms.  

Law Example 

logb1 = 0 log21 = 0 
logbb = 1 log66 = 1 
logbx + logby = logb(xy) log57 + log52 = log514 

logbx – logby = logb(
𝒙

𝒚
) log321 – log37 = log33 = 1 

logbxn = nlogbx log8 35 = 5log83   

Method 2: Recall that the functions 𝑒𝑥 and ln 𝑥 are inverses of each 

other. This means that 𝑒ln 𝑥 = 𝑥 and ln 𝑒𝑥 = 𝑥. Replacing 𝑥 by 𝑥5 in the 

second equation gives ln 𝑒𝑥
5
= 𝑥5. 

(3) Geometrically inverse functions have graphs that are mirror images 
across the line 𝑦 = 𝑥. Here is a picture of the graphs of 𝑦 = 𝑒𝑥 and    
𝑦 = ln 𝑥 together with the line 𝑦 = 𝑥. Notice how the line 𝑦 = 𝑥 acts as 
a mirror for the two functions. 

 

(4) 𝑥 ⋅ 𝑥5 = 𝑥1 ⋅ 𝑥5 = 𝑥1+5 = 𝑥6.  
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Here is a complete review of the laws of exponents: 

Law Example 

x0 = 1 30 = 1 
x1 = x 91 = 9 
xaxb = xa+b x3x5 = x8 
xa/xb = xa-b x11/x4 = x7 
(xa)b = xab (x5)3 = x15 
(xy)a = xaya (xy)4 = x4y4

(x/y)a = xa/ya (x/y)6 = x6/y6

x-1 = 1/x 3-1 = 1/3
x-a = 1/xa 9-2 = 1/81

x1/n = √𝒙
𝒏

x1/3 = √𝑥
3

xm/n =√𝒙𝒎
𝒏

=(√𝒙
𝒏
)
𝒎

x9/2 =√𝑥9=(√𝑥)
9

4. The slope of the tangent line to the graph of 𝑦 = 𝑥𝑒2𝑥 at 𝑥 =
ln 3 is

(A) 9
(B) 18
(C) 18 ln 3
(D) 18 ln 3 + 9

Solution: 𝑦′ = 𝑥𝑒2𝑥 ⋅ 2 + 𝑒2𝑥 ⋅ 1 = 2𝑥𝑒2𝑥 + 𝑒2𝑥 = 𝑒2𝑥(2𝑥 + 1). When 
𝑥 = ln 3, we have that the slope of the tangent line is 

𝑦′|𝑥=ln 3 = 𝑒
2 ln 3 (2 ln 3 + 1) = 𝑒ln 3

2 (2 ln 3 + 1)

= 32(2 ln 3 + 1) = 9(2 ln 3 + 1) = 18 ln 3 + 9. 

This is choice (D). 

Notes: (1) To find the slope of a tangent line to the graph of a function, 
we simply take the derivative of that function. If we want the slope of 
the tangent line at a specified 𝑥-value, we substitute that 𝑥-value into 
the derivative of the function. 

(2) The derivative of 𝑓(𝑥) = 𝑒𝑥 is 𝑓′(𝑥) = 𝑒𝑥

(3) In this problem we used the product rule which says the following:

If f (𝑥) = 𝑢(𝑥)𝑣(𝑥) , then 

𝑓′(𝑥) = 𝑢(𝑥)𝑣′(𝑥) + 𝑣(𝑥)𝑢′(𝑥) 
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(4) When differentiating 𝑒2𝑥 we needed to use the chain rule. See 
problem 2 for details.  

(5) See problem 3 for information on logarithms.  

(6) The functions 𝑒𝑥 and ln 𝑥 are inverses of each other. This means that 

𝑒ln 𝑥 = 𝑥 and ln 𝑒𝑥 = 𝑥. In particular, 𝑒ln 3
2 = 32. 

(7) 𝑛 ln 𝑥 = ln 𝑥𝑛. In particular, 2 ln 3 = ln 32. See the first table in 
problem 3 for the rule of logarithms used here. 

(8) Using notes (6) and (7) together we get 𝑒2 ln 3 = 𝑒ln 3
2
= 𝑒ln 9 = 9. 

(9) As an alternative to using the rule of logarithms as was done in note 

(8), we can use a law of exponents instead to write 𝑒2 ln 3 = (𝑒ln 3)
2

. 

Since 𝑒ln 3 = 3, we have 𝑒2 ln 3 = (𝑒ln 3)
2
= 32 = 9.  

The rule that we used here is (𝑥𝑎)𝑏 = 𝑥𝑎𝑏 with 𝑎 = ln 3 and 𝑏 = 2. 

(9) If we could use a calculator for this problem, we can compute 𝑦′ at 
𝑥 = ln 2 using our TI-84 calculator by first selecting nDeriv( (or pressing 
8) under the MATH menu, then typing the following: Xe^(2X), X, ln 3), 
and pressing ENTER. The display will show approximately 28.775.  

When we put choice (D) in our calculator we also get approximately 
28.775.   

5. If 𝑥 = ln(𝑡2 + 1) and 𝑦 = cos 3𝑡, then 
𝑑𝑦

𝑑𝑥
= 

(A) −
3 sin 3𝑡

𝑡2+1
 

(B) −
3 sin 3𝑡

2𝑡(𝑡2+1)
 

(C) −
3(𝑡2+1) sin 3𝑡

2𝑡
 

(D) −
3 sin 3𝑡

2𝑡
 

Solution: 
𝑑𝑦

𝑑𝑡
= −3 sin 3𝑡 and 

𝑑𝑥

𝑑𝑡
=

2𝑡

𝑡2+1
. Therefore 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

= (−3 sin 3𝑡) ÷
2𝑡

𝑡2+1
= (−3 sin 3𝑡) ⋅

𝑡2+1

2𝑡
= −

3(𝑡2+1) sin 3𝑡

2𝑡
 . 

This is choice (C). 
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Notes: (1) In this problem we are given a parametrically defined curve. 
The variable 𝑡 is called the parameter, and the two given equations are 
called parametric equations.  

For example, when 𝑡 = 0, we have that 𝑥 = ln(02 + 1) = ln 1 =0 and 
𝑦 = cos(3 ⋅ 0) = 1. So the point (0,1) is on the given parametrically 
defined curve, and this point corresponds to the parameter value 𝑡 = 0. 

Each value for 𝑡 corresponds to a point (𝑥, 𝑦) in the 𝑥𝑦-plane.  

(2) The derivative 
𝑑𝑦

𝑑𝑥
 is equal to 

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

.  

(3) The derivative of ln 𝑥 is 
1

𝑥
 . 

Symbolically, 
𝑑

𝑑𝑥
[ln 𝑥] =

1

𝑥
 . 

(4) The derivatives 
𝑑𝑦

𝑑𝑡
 and 

𝑑𝑥

𝑑𝑡
 both required the chain rule. See problem 2 

for a detailed explanation of this rule. 

6. If 𝑔(𝑥) = 𝜋𝑒3 +
1

√𝑥2
3 + (

𝑥+2

𝑥−2
)
2
− 11𝑥, then 𝑔′(𝑥) =  

Solution:  We first rewrite 𝑔 as 𝑔(𝑥) =  𝜋𝑒3 + 𝑥−
2

3 + (
𝑥+2

𝑥−2
)
2

− 11𝑥. 

𝑔′(𝑥) = 0 −
2

3
𝑥−

5
3 + 2(

𝑥 + 2

𝑥 − 2
)
(𝑥 − 2)(1) − (𝑥 + 2)(1)

(𝑥 − 2)2
− 11𝑥(ln 11) 

= −
2

3 √𝑥5
3 − 8

𝑥+2

(𝑥−2)3
− (ln 11)11𝑥. 

Notes: (1) 𝜋𝑒3 is a constant. Therefore 
𝑑

𝑑𝑥
[𝜋𝑒3] = 0. 

(2) 
1

√𝑥2
3 =

1

𝑥
2
3

= 𝑥−
2

3. So 
𝑑

𝑑𝑥
[
1

√𝑥2
3 ] =

𝑑

𝑑𝑥
[𝑥−

2

3] = −
2

3
𝑥−

2

3
−1 = −

2

3
𝑥−

5

3 . 

(3) −
2

3
𝑥−

5

3 = −
2

3𝑥
5
3

= −
2

3 √𝑥5
3  . 

(4) The quotient rule says the following: 

 If f (𝑥) =
𝑁(𝑥)

𝐷(𝑥)
 , then 
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𝑓′(𝑥) =
𝐷(𝑥)𝑁′(𝑥) − 𝑁(𝑥)𝐷′(𝑥)

[𝐷(𝑥)]2
 

I like to use the letters 𝑁 for “numerator” and D for “denominator.” 

(5) The derivative of 𝑥 + 2 is 1 because the derivative of 𝑥 is 1, and the 
derivative of any constant is 0.  

Similarly, the derivative of 𝑥 − 2 is also 1. 

Now using the quotient rule we see that the derivative of 
𝑥+2

𝑥−2
 is 

(𝑥−2)(1)−(𝑥+2)(1)

(𝑥−2)2
=

𝑥−2−𝑥−2

(𝑥−2)2
=

−4

(𝑥−2)2
 . 

(6) Differentiating (
𝑥+2

𝑥−2
)
2

 requires the chain rule. Using note (5) we see 

that this derivative is 2 (
𝑥+2

𝑥−2
) (

−4

(𝑥−2)2
) = −8

𝑥+2

(𝑥−2)3
 . 

(7) If 𝑏 > 0, then 
𝑑

𝑑𝑥
[𝑏𝑥] = 𝑏𝑥(ln 𝑏). 

In particular, 
𝑑

𝑑𝑥
[11𝑥] = 11𝑥(ln 11). 

(8) For 𝑏 > 0, 𝑏𝑥 = 𝑒𝑥 ln𝑏.  

To see this, first observe that  𝑒𝑥 ln𝑏 = 𝑒ln 𝑏
𝑥
 by the power rule for 

logarithms (see problem 3 for the laws of logarithms). 

Second, recall that the functions 𝑒𝑥 and ln 𝑥 are inverses of each other. 

This means that 𝑒ln 𝑥 = 𝑥 and ln 𝑒𝑥 = 𝑥. Replacing 𝑥 by 𝑏𝑥 in the first 

formula yields 𝑒ln 𝑏
𝑥
 = 𝑏𝑥. 

(9) The formula in note (8) gives an alternate method for differentiating 

11𝑥. We can rewrite 11𝑥 as 𝑒𝑥 ln 11 and use the chain rule. Here are the 
details: 

𝑑

𝑑𝑥
[11𝑥] =

𝑑

𝑑𝑥
[𝑒𝑥 ln 11] = 𝑒𝑥 ln 11(ln 11) = 11𝑥(ln 11). 

Note that in the last step we rewrote 𝑒𝑥 ln 11 as 11𝑥. 

(10) There is one more method we can use to differentiate 11𝑥. We can 
use logarithmic differentiation. 

We start by writing 𝑦 = 11𝑥. 



 

20 

We then take the natural log of each side of this equation: ln 𝑦 = ln 11𝑥. 

We now use the power rule for logarithms to bring the 𝑥 out of the 
exponent: ln 𝑦 = 𝑥 ln 11. 

Now we differentiate implicitly to get 
1

𝑦
⋅
𝑑𝑦

𝑑𝑥
= ln 11. 

Solve for 
𝑑𝑦

𝑑𝑥
 by multiplying each side of the last equation by 𝑦 to get        

𝑑𝑦

𝑑𝑥
= 𝑦 ln 11. 

Finally, replacing 𝑦 by 11𝑥 gives us 
𝑑𝑦

𝑑𝑥
= 11𝑥(ln 11). 

(11) Logarithmic differentiation is a general method that can often be 
used to handle expressions that have exponents with variables. 

(12) See problem 35 for more information on implicit differentiation. 

7. Differentiate 𝑓(𝑥) =
𝑒cot 3𝑥

√𝑥
 and express your answer as a simple 

fraction. 

Solution:  

𝑓′(𝑥) =
√𝑥(𝑒cot 3𝑥)(− csc2 3𝑥)(3)−𝑒cot 3𝑥(

1

2√𝑥
)

𝑥
=

−6𝑥(csc2 3𝑥)𝑒cot 3𝑥−𝑒cot 3𝑥

2𝑥√𝑥
 . 

Notes: (1) 
𝑑

𝑑𝑥
[𝑒𝑥] = 𝑒𝑥 

𝑑

𝑑𝑥
[cot 𝑥] = − csc2 𝑥  

𝑑

𝑑𝑥
[3𝑥] = 3  

𝑑

𝑑𝑥
[√𝑥] =

𝑑

𝑑𝑥
[𝑥

1

2] =
1

2
𝑥−

1

2 =
1

2
⋅
1

𝑥
1
2

=
1

2
⋅
1

√𝑥
=

1

2√𝑥
  

(2) We start off using the quotient rule (see problem 6 for a detailed 
explanation of the quotient rule). Here we get 

√𝑥⋅
𝑑

𝑑𝑥
[𝑒cot 3𝑥]−𝑒cot 3𝑥⋅

𝑑

𝑑𝑥
[√𝑥]

(√𝑥)
2   

(3) 
𝑑

𝑑𝑥
[𝑒cot 3𝑥] requires two applications of the chain rule. See problem 2 

for a detailed explanation of the chain rule. Here we get 
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𝑑

𝑑𝑥
[𝑒cot 3𝑥] = 𝑒cot 3𝑥(− csc2 3𝑥)(3). 

(4) After differentiating we wind up with a complex fraction: 

√𝑥(𝑒cot 3𝑥)(− csc2 3𝑥)(3)−𝑒cot 3𝑥(
1

2√𝑥
)

𝑥
  

We simplify this complex fraction by multiplying the numerator and 

denominator by 2√𝑥. 

Note the following: 

𝑥(2√𝑥) = 2𝑥√𝑥 (this is where the final denominator comes from). 

√𝑥(𝑒cot 3𝑥)(− csc2 3𝑥)(3)(2√𝑥) = −6√𝑥√𝑥 (csc2 3𝑥)𝑒cot 3𝑥 = −6𝑥 (csc2 3𝑥)𝑒cot 3𝑥  

 𝑒cot 3𝑥 (
1

2√𝑥
) (2√𝑥) = 𝑒cot 3𝑥  

The last two results give the final numerator. 

8. If 𝑭 is the vector-valued function defined by                      

𝑭(𝑡) = 〈
ln 𝑡

𝑡
, cos2 𝑡〉, then 𝑭′′(𝑡) = 

Solution:  

𝑭′(𝑡) = 〈
𝑡(
1

𝑡
)−(ln 𝑡)(1)

𝑡2
, 2 (cos 𝑡)(− sin 𝑡)〉 = 〈

1−ln 𝑡

𝑡2
, −2 cos 𝑡 sin 𝑡〉, and 

so 𝑭′′(𝑡) = 〈
𝑡2(

−1

𝑡
)−(1−ln 𝑡)(2𝑡)

𝑡4
, −2 cos 𝑡 cos 𝑡 − 2(sin 𝑡)(− sin 𝑡)〉 

= 〈
−𝑡−2𝑡+2𝑡 ln 𝑡

𝑡4
, −2 (cos2 𝑡 − sin2 𝑡)〉 = 〈

𝟐 𝐥𝐧 𝒕−𝟑

𝒕𝟑
, −𝟐 𝐜𝐨𝐬 𝟐𝒕〉. 

Notes: (1) A 2-dimensional vector-valued function 𝑭 has the form 
𝑭(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 where 𝑥 and 𝑦 are ordinary functions of the variable 
𝑡. 

A vector-valued function is just a convenient way to give a 
parametrically defined curve with a single function.   

The vector-valued function given in the problem is equivalent to the 
parametric equations 

𝑥 =
ln 𝑡

𝑡
, 𝑦 = cos2 𝑡 

Can you express the parametric equations given in problem 5 as a 
vector-valued function? 
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(2) The derivative of the vector-valued function 𝑭 which is defined by 
𝑭(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 is the vector-valued function 𝑭′ which is defined by 
𝑭′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡)〉. In other words, we simply differentiate each 
component. 

In this problem we have 𝑥(𝑡) =
ln 𝑡

𝑡
 and 𝑦(𝑡) = cos2 𝑡. 

Note also that 𝑭′′(𝑡) = 〈𝑥′′(𝑡), 𝑦′′(𝑡)〉. 

(3) Recall from problem 5 that 
𝑑

𝑑𝑥
[ln 𝑥] =

1

𝑥
 . 

(4) We used the quotient rule to differentiate 𝑥 and 𝑥′. See problem 6 
for a detailed explanation of the quotient rule.  

(5) cos2 𝑡 is an abbreviation for (cos 𝑡)2. To differentiate 𝑦 therefore 
required the chain rule. 

(6)To differentiate 𝑦′ we used the product rule. 

(7) The following two identities can be useful: 

sin 2𝑡 = 2 sin 𝑡 cos 𝑡            cos 2𝑡 = cos2 𝑡 − sin2 𝑡 

The second identity was used when simplifying 𝑦′′(𝑡). 

We could have used the first identity to write  

𝑦′(𝑡) = −2 cos 𝑡 sin 𝑡 = −2 sin 𝑡 cos 𝑡 = − sin 2𝑡. 

Differentiating this last expression then gives 

𝑦′′(𝑡) = −2 cos 2𝑡. 

LEVEL 1: INTEGRATION  

9. ∫(3𝑥2 − 6√𝑥 + 𝑒𝑥) 𝑑𝑥 =  

(A) 6𝑥 −
3

√𝑥 
+ 𝑒𝑥 + 𝐶 

(B) 𝑥3 − 4√𝑥3 + 𝑒𝑥 + 𝐶 

(C) 𝑥3 − 3𝑥 + 𝑒𝑥 + 𝐶 

(D) 𝑥3 − 3𝑥 + 𝑥𝑒𝑥−1 + 𝐶 
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Solution:  

∫(3𝑥2 − 6√𝑥 + 𝑒𝑥) 𝑑𝑥 = 3 ⋅
𝑥3

3
−

6𝑥
3
2

3

2

+ 𝑒𝑥 + 𝐶 = 𝑥3 − 4√𝑥3 + 𝑒𝑥 + 𝐶  

This is choice (B). 

Notes: (1) If 𝑛 is any real number, then an antiderivative of 𝑥𝑛 is 
𝑥𝑛+1

𝑛+1
.  

Symbolically, ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶, where 𝐶 is an arbitrary constant. 

For example, ∫ 𝑥2𝑑𝑥 =
𝑥3

3
+ 𝐶.  

As another example, 

∫√𝑥𝑑𝑥 = ∫𝑥
1

2𝑑𝑥 =
𝑥
3
2

3

2

+ 𝐶 = 𝑥
3

2 ÷
3

2
+ 𝐶 = 𝑥

3

2 ⋅
2

3
+ 𝐶 =

2

3
𝑥
3

2 + 𝐶. 

(2) Since 
𝑑

𝑑𝑥
[𝑒𝑥] = 𝑒𝑥, it follows that ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶 

(3) If 𝑔 and ℎ are functions, then  

∫[𝑔(𝑥) + ℎ(𝑥)]𝑑𝑥 = ∫𝑔(𝑥)𝑑𝑥 + ∫ℎ(𝑥)𝑑𝑥. 

In other words, when integrating a sum we can simply integrate term by 
term. 

Similarly, ∫[𝑔(𝑥) − ℎ(𝑥)]𝑑𝑥 = ∫𝑔(𝑥)𝑑𝑥 − ∫ℎ(𝑥)𝑑𝑥. 

(4) If 𝑔 is a function and 𝑘 is a constant, then  

∫𝑘𝑔(𝑥)𝑑𝑥 = 𝑘∫𝑔(𝑥)𝑑𝑥 

For example, ∫3𝑥2𝑑𝑥 = 3∫𝑥2𝑑𝑥 = 3 (
𝑥3

3
) + 𝐶 = 𝑥3 + 𝐶. 

(5) In the given problem we integrate each of 𝑥2, √𝑥, and 𝑒𝑥 separately 
and then use notes (3) and (4) to write the final answer. 

(6) We do not need to include a constant 𝐶 for each individual 
integration since if we add or subtract two or more constants we simply 
get a new constant. This is why we simply add one constant 𝐶 at the end 
of the integration. 
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(7) It is also possible to solve this problem by differentiating the answer 
choices. For example, if we start with choice (C), then we have that 
𝑑

𝑑𝑥
(𝑥3 − 3𝑥 + 𝑒𝑥 + 𝐶) = 3𝑥2 − 3 + 𝑒𝑥. So we can immediately see that 

choice (C) is incorrect. 

When we differentiate choice (B) however, we get 

𝑑

𝑑𝑥
[𝑥3 − 4√𝑥3 + 𝑒𝑥 + 𝐶] =

𝑑

𝑑𝑥
[𝑥3 − 4𝑥

3
2 + 𝑒𝑥 + 𝐶] 

= 3𝑥2 − 4(
3

2
𝑥
1

2) + 𝑒𝑥 + 0 = 3𝑥2 − 6√𝑥 + 𝑒𝑥. 

This is the integrand (the expression between the integral symbol and 
𝑑𝑥) that we started with. So the answer is choice (B). 

(8) Note that the derivative of any constant is always 0, ie. 
𝑑

𝑑𝑥
[𝐶] = 0. 

10. ∫ (𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3𝑑𝑥 =

2

0
   

(A) −
𝑒16

3
 

(B)      0 

(C)     
𝑒16

3
 

(D)   
1−𝑒16

3
 

Solution:  

∫ (𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3𝑑𝑥 =

2

0
−
1

3
𝑒6𝑥

2−𝑥3
 
 |0
2
= −

1

3
𝑒16 − (−

1

3
𝑒0) =

−𝑒16+1

3
  

This is equivalent to choice (D). 

Notes: (1) To evaluate ∫(𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3𝑑𝑥, we can formally make the 

substitution 𝑢 = 6𝑥2 − 𝑥3. It then follows that  

𝑑𝑢 = (12𝑥 − 3𝑥2)𝑑𝑥 = 3(4𝑥 − 𝑥2)𝑑𝑥 = −3(𝑥2 − 4𝑥)𝑑𝑥 

Uh oh! There is no factor of −3 inside the integral. But constants never 

pose a problem. We simply multiply by −3 and −
1

3
 at the same time. We 

place the −3 inside the integral where it is needed, and we leave the −
1

3
 

outside of the integral sign as follows: 
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∫(𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3𝑑𝑥 = −

1

3
∫(−3)(𝑥2 − 4𝑥)𝑒6𝑥

2−𝑥3𝑑𝑥  

We have this flexibility to place the −3 and −
1

3
 where we like because 

multiplication is commutative, and constants can be pulled outside of 
the integral sign freely. 

We now have 

∫(𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3𝑑𝑥 = −

1

3
∫(−3)(𝑥2 − 4𝑥)𝑒6𝑥

2−𝑥3𝑑𝑥  

= −
1

3
∫ 𝑒𝑢𝑑𝑢 = −

1

3
𝑒𝑢 + 𝐶 = −

1

3
𝑒6𝑥

2−𝑥3 + 𝐶  

(2) ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 where 𝐹 is any antiderivative of 𝑓. 

In this example, 𝐹(𝑥) = −
1

3
𝑒6𝑥

2−𝑥3  is an antiderivative of the function 

𝑓(𝑥) = (𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥3. So  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(2) − 𝐹(0) = −
1

3
𝑒6⋅2

2−232

0
− (−

1

3
𝑒0). 

(3) We sometimes write 𝐹(𝑏) − 𝐹(𝑎) as 𝐹(𝑥)
 
 |𝑎
𝑏

 . 

This is just a convenient way of focusing on finding an antiderivative 
before worrying about plugging in the upper and lower limits of 
integration (these are the numbers 𝑏 and 𝑎, respectively). 

(4) If we are doing the substitution formally, we can save some time by 
changing the limits of integration. We do this as follows: 

∫ (𝑥2 − 4𝑥)𝑒6𝑥
2−𝑥32

0
𝑑𝑥 = −

1

3
∫ (−3)(𝑥2 − 4𝑥)𝑒6𝑥

2−𝑥32

0
𝑑𝑥  

= −
1

3
∫ 𝑒𝑢
16

0
𝑑𝑢 = −

1

3
𝑒𝑢
 
 |0
16
= −

1

3
(𝑒16 − 𝑒0) =

−𝑒16+1

3
   

Notice that the limits 0 and 2 were changed to the limits 0 and 16, 
respectively. We made this change using the formula that we chose for 
the substitution: 𝑢 = 6𝑥2 − 𝑥3. When 𝑥 = 0, we have 𝑢 = 0 and when 
𝑥 = 2, we have 𝑢 = 6(2)2 − 23 = 6 ⋅ 4 − 8 = 24 − 8 = 16. 

11. ∫
1

𝑥 ln 𝑥
𝑑𝑥 =  

Solution: ∫
1

𝑥 ln𝑥
𝑑𝑥 = ln|ln 𝑥| + 𝐶. 
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Notes: (1) To evaluate ∫
1

𝑥 ln𝑥
𝑑𝑥, we can formally make the substitution 

𝑢 = ln 𝑥. It then follows that 𝑑𝑢 =
1

𝑥
𝑑𝑥. So we have 

∫
1

𝑥 ln𝑥
𝑑𝑥 = ∫

1

ln𝑥
⋅
1

𝑥
𝑑𝑥 = ∫

1

𝑢
𝑑𝑢 = ln|𝑢| + 𝐶 = ln|ln 𝑥| + 𝐶.  

To get the first equality we simply rewrote 
1

𝑥 ln𝑥
 as 

1

𝑥
⋅
1

ln𝑥
=

1

ln𝑥
⋅
1

𝑥
. This 

way it is easier to see exactly where 𝑢 and 𝑑𝑢 are. 

To get the second equality we simply replaced ln 𝑥 by 𝑢, and 
1

𝑥
𝑑𝑥 by 𝑑𝑢. 

To get the third equality we used the basic integration formula 

∫
1

𝑥
𝑑𝑥 = ln|𝑥| + 𝐶. 

To get the last equality we replaced 𝑢 by ln 𝑥 (since we set 𝑢 = ln 𝑥 in 
the beginning). 

(2) Recall from problem 5 that 
𝑑

𝑑𝑥
[ln 𝑥] =

1

𝑥
. It therefore seems like it 

should follow that ∫
1

𝑥
𝑑𝑥 = ln 𝑥 + 𝐶. But this is not completely accurate. 

Observe that we also have 
𝑑

𝑑𝑥
[ln(−𝑥)] =

1

−𝑥
 (−1) =

1

𝑥
 (the chain rule 

was used here). So it appears that we also have ∫
1

𝑥
𝑑𝑥 = ln(−𝑥) + 𝐶. 

How can the same integral lead to two different answers? Well it 
doesn’t. Note that ln 𝑥 is only defined for 𝑥 > 0, and ln(−𝑥) is only 
defined for 𝑥 < 0.  

Furthermore, observe that ln|𝑥| = {
ln 𝑥        if 𝑥 > 0
ln(−𝑥) if 𝑥 < 0

.  

It follows that 

∫
1

𝑥
𝑑𝑥 = ln|𝑥| + 𝐶. 

12. ∫5cot 𝑥 csc2 𝑥 𝑑𝑥 =  

Solution: ∫5cot 𝑥 csc2 𝑥 𝑑𝑥 = −
5cot𝑥

ln 5
+ 𝐶. 

Notes: (1) Recall from problem 6 that 
𝑑

𝑑𝑥
[5𝑥] = 5𝑥(ln 5). It follows that 

∫5𝑥 𝑑𝑥 =
5𝑥

ln 5
+ 𝐶. 
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To verify this, note that  

𝑑

𝑑𝑥
[
5𝑥

ln 5
+ 𝐶] =

1

ln 5

𝑑

𝑑𝑥
[5𝑥] +

𝑑

𝑑𝑥
[𝐶] =

1

ln 5
⋅ 5𝑥(ln 5) + 0 = 5𝑥. 

More generally, we have that for any 𝑏 > 0, 𝑏 ≠ 1, ∫𝑏𝑥 𝑑𝑥 =
𝑏𝑥

ln 𝑏
+ 𝐶.  

(2) As an alternative way to evaluate ∫5𝑥 𝑑𝑥, we can rewrite 5𝑥 as 

𝑒𝑥 ln 5 and perform the substitution 𝑢 = 𝑥 ln 5, so that 𝑑𝑢 = (ln 5) 𝑑𝑥. 
So we have 

∫5𝑥 𝑑𝑥 = ∫ 𝑒𝑥 ln 5 𝑑𝑥 =
1

ln 5
∫ 𝑒𝑥 ln 5 (ln 5) 𝑑𝑥 =

1

ln 5
∫ 𝑒𝑢 𝑑𝑢  

=
1

ln 5
𝑒𝑢 + 𝐶 =

1

ln 5
𝑒𝑥 ln 5 + 𝐶 =

1

ln 5
5𝑥 + 𝐶 =

5𝑥

ln 5
+ 𝐶. 

(3) To evaluate ∫5cot 𝑥 csc2 𝑥 𝑑𝑥, we can formally make the substitution 
𝑢 = cot 𝑥. It then follows that 𝑑𝑢 = −csc2 𝑥 𝑑𝑥. So we have 

∫5cot 𝑥 csc2 𝑥 𝑑𝑥 = −∫5cot 𝑥 (−csc2 𝑥)𝑑𝑥 = −∫5𝑢 𝑑𝑢 = −
5𝑢

ln 5
+ 𝐶  

= −
5cot𝑥

ln 5
+ 𝐶. 

(4) As an alternative, we can combine notes (2) and (3) to evaluate the 

integral in a single step by rewriting 5cot 𝑥 csc2 𝑥 as 𝑒(cot 𝑥)(ln 5) csc2 𝑥, 
and then letting 𝑢 = (cot 𝑥)(ln 5), so that 𝑑𝑢 = (− csc2 𝑥)(ln 5)𝑑𝑥. I 
leave the details of this solution to the reader. 

13. If 𝑓 is a continuous function for all real 𝑥, and 𝑔 is an 

antiderivative of 𝑓, then lim
ℎ→0

1

ℎ
∫ 𝑓(𝑥)
𝑐+ℎ

𝑐
𝑑𝑥 is  

(A) 𝑔(0) 

(B) 𝑔′(0) 

(C) 𝑔(𝑐) 

(D) 𝑔′(𝑐) 

Solution: lim
ℎ→0

1

ℎ
∫ 𝑓(𝑥)
𝑐+ℎ

𝑐
𝑑𝑥 = lim

ℎ→0

1

ℎ
[𝑔(𝑥)]𝑐

𝑐+ℎ 

= lim
ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
= 𝑔′(𝑐). 

This is choice (D).  
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Notes: (1) The second Fundamental Theorem of Calculus says that if 𝑓 is 
a Riemann integrable function on [𝑎, 𝑏], then                          

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) where 𝐹 is any antiderivative of 𝑓. 

In this problem, since 𝑔 is an antiderivative of 𝑓, we have 

∫ 𝑓(𝑥)
𝑐+ℎ

𝑐
𝑑𝑥 =  𝑔(𝑐 + ℎ) − 𝑔(𝑐). 

(2) We sometimes use the notation [𝐹(𝑥)]𝑎
𝑏  as an abbreviation for 

𝐹(𝑏) − 𝐹(𝑎). 

This is just a convenient way of focusing on finding an antiderivative 
before worrying about plugging in the upper and lower limits of 
integration (these are the numbers 𝑏 and 𝑎, respectively). 

In the problem above we have 

∫ 𝑓(𝑥)
𝑐+ℎ

𝑐

𝑑𝑥 = [𝑔(𝑥)]𝑐
𝑐+ℎ =  𝑔(𝑐 + ℎ) − 𝑔(𝑐) 

(3) If a function f is continuous on [𝑎, 𝑏], then 𝑓 is Riemann integrable on 
[𝑎, 𝑏]. 

(4) Recall the definition of the derivative:  

𝑔′(𝑥) = lim
ℎ→0

𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ
 

So we have 𝑔′(𝑐) = lim
ℎ→0

𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
 

14. If the function 𝑔 given by 𝑔(𝑥) = √𝑥3 has an average value of 

2 on the interval [0, 𝑏], then 𝑏 =  

(A) 5
3

2 

(B) 5 

(C) 5
2

3 

(D) 5
1

2 

Solution: The average value of 𝑔 on [0, 𝑏] is 

1

𝑏−0
∫ 𝑥

3

2
𝑏

0
𝑑𝑥 =

2

5𝑏
𝑥
5

2

 
 |0
𝑏
=

2

5𝑏
⋅ 𝑏

5

2 =
2

5
𝑏
3

2 . 
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So we have 
2

5
𝑏
3

2 = 2. Therefore 𝑏
3

2 = 5, and so 𝑏 = 5
2

3, choice (C). 

Notes: (1) The average value of the function 𝑓 over the interval [𝑎, 𝑏] is  

1

𝑏−𝑎
∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥. 

(2) Recall from problem 9 that for any real number 𝑛, we have 

∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶, where 𝐶 is an arbitrary constant. 

For example, ∫ 𝑥
3

2𝑑𝑥 =
𝑥
5
2

5

2

+ 𝐶 =𝑥
5

2 ÷
5

2
+ 𝐶 = 𝑥

5

2 ⋅
2

5
+ 𝐶 =

2

5
𝑥
5

2 + 𝐶.  

(3) ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 where 𝐹 is any antiderivative of 𝑓. 

Here, 𝐺(𝑥) =
2

5
𝑥
5

2 is an antiderivative of the function 𝑔(𝑥) = 𝑥
3

2. So 

∫ 𝑔(𝑥)𝑑𝑥 = 𝐺(𝑏) − 𝐺(0) =
2

5
𝑏
5

2 − 0 =
2

5
𝑏
5

2
𝑏

0
. 

(4) 
1

𝑏
⋅ 𝑏

5

2 = 𝑏−1 ⋅ 𝑏
5

2 = 𝑏−1+
5

2 = 𝑏−
2

2
+
5

2 = 𝑏
3

2. 

It follows that 
2

5𝑏
⋅ 𝑏

5

2 =
2

5
⋅
1

𝑏
⋅ 𝑏

5

2 =
2

5
𝑏
3

2. 

(5) We solve the equation 
2

5
𝑏
3

2 = 2 by first multiplying each side of the 

equation by 
5

2
. Since 

5

2
⋅
2

5
= 1, we get 𝑏

3

2 = 2(
5

2
) = 5. 

We then raise each side of this last equation to the power 
2

3
. Since 

(𝑏
3

2)
2

3 = 𝑏
3

2
⋅
2

3 = 𝑏1 = 𝑏, we get 𝑏 = 5
2

3. 

(6) See problem 3 for a review of the laws of exponents used in notes (4) 
and (5). 

15. ∫ 2𝑥𝑒−𝑥
2∞

0
𝑑𝑥 is  

(A) divergent 

(B) −1 

(C) 
1

2
 

(D) 1 
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Solution: ∫ 2𝑥𝑒−𝑥
2∞

0
𝑑𝑥 = −𝑒−𝑥

2
 |0
∞ = 0 − (−1) = 1, choice (D). 

Notes: (1) The given integral is an improper integral because one of the 
limits of integration is ∞. This is actually a Type II improper integral. For 
an example of a Type I improper integral, see problem 45. 

(2) ∫ 𝑓(𝑥)
∞

0
𝑑𝑥 is an abbreviation for lim

𝑏→∞
∫ 𝑓(𝑥)
𝑏

0
𝑑𝑥, and 𝐹(𝑥) |0

∞ is an 

abbreviation for lim
𝑏→∞

𝐹(𝑥) |0
𝑏. 

In this problem, 𝑓(𝑥) = 2𝑥𝑒−𝑥
2
 and 𝐹(𝑥) = −𝑒−𝑥

2
.  

(3) To evaluate the integral ∫2𝑥𝑒−𝑥
2
𝑑𝑥, we can formally make the 

substitution 𝑢 = −𝑥2. It then follows that 𝑑𝑢 = −2𝑥𝑑𝑥.  

Uh oh! There is no minus sign inside the integral. But constants never 
pose a problem. We simply multiply by −1 inside the integral where it is 
needed, and also outside of the integral sign as follows: 

∫2𝑥𝑒−𝑥
2
𝑑𝑥 = −∫−2𝑥𝑒−𝑥

2
𝑑𝑥  

We have this flexibility to do this because constants can be pulled 
outside of the integral sign freely, and (−1)(−1) = 1, so that the two 
integrals are equal in value. 

We now have 

−∫−2𝑥𝑒−𝑥
2
𝑑𝑥 = −∫𝑒𝑢𝑑𝑢 = −𝑒𝑢 + 𝐶 = −𝑒−𝑥

2
+ 𝐶. 

We get the leftmost equality by replacing −𝑥2 by 𝑢, and −2𝑥𝑑𝑥 by 𝑑𝑢. 

We get the second equality by the basic integration formula  

∫ 𝑒𝑢𝑑𝑢 = 𝑒𝑢 + 𝐶. 

And we get the rightmost equality by replacing 𝑢 with −𝑥2. 

(4) Note that the function 𝑓(𝑥) = 𝑒−𝑥
2
 can be written as the 

composition 𝑓(𝑥) = 𝑔(ℎ(𝑥)) where 𝑔(𝑥) = 𝑒𝑥 and ℎ(𝑥) = −𝑥2.  

Since ℎ(𝑥) = −𝑥2 is the inner part of the composition, it is natural to try 
the substitution 𝑢 = −𝑥2. 

Note that the derivative of −𝑥2 is −2𝑥, so that 𝑑𝑢 = −2𝑥𝑑𝑥. 
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(5) With a little practice, we can evaluate an integral like this very quickly 
with the following reasoning: The derivative of −𝑥2 is −2𝑥. So to 

integrate −2𝑥𝑒−𝑥
2
 we simply pretend we are integrating 𝑒𝑥 but as we 

do it we leave the −𝑥2 where it is. This is essentially what was done in 
the above solution.  

Note that the −2𝑥 “goes away” because it is the derivative of −𝑥2. We 
need it there for everything to work.  

(6) If we are doing the substitution formally, we can save some time by 
changing the limits of integration. We do this as follows: 

∫ 2𝑥𝑒−𝑥
2∞

0
𝑑𝑥 = −∫ −2𝑥𝑒−𝑥

2∞

0
𝑑𝑥  

= −∫ 𝑒𝑢
−∞

0
𝑑𝑢 = −𝑒𝑢

 
 |0
−∞

= −(0 − 𝑒0) = −(−1) = 1.  

Notice that the limits 0 and ∞ were changed to the limits 0 and −∞, 
respectively. We made this change using the formula that we chose for 
the substitution: 𝑢 = −𝑥2. When 𝑥 = 0, we have that 𝑢 = 0 and when 
𝑥 = ∞, we have “𝑢 = −∞2 = −∞ ⋅ ∞ = −∞.” 

I used quotation marks in that last computation because the 
computation ∞ ⋅ ∞ is not really well-defined. What we really mean is 
that if we have two expressions that are approaching ∞, then their 
product is approaching ∞ as well. For all practical purposes, the 
following computations are valid: 

∞ ⋅ ∞ = ∞  ∞+∞ = ∞ −∞−∞ = −∞ 

For example, if lim
𝑥→∞

𝑓(𝑥) = ∞ and lim
𝑥→∞

𝑔(𝑥) = ∞, then lim
𝑥→∞

[𝑓(𝑥) ⋅

𝑔(𝑥)] = ∞ and lim
𝑥→∞

[𝑓(𝑥) + 𝑔(𝑥)] = ∞. 

Note that the following forms are indeterminate: 
∞

∞
          

0

0
          0 ⋅ ∞          ∞−∞          00          1∞          ∞0 

For example, if lim
𝑥→∞

𝑓(𝑥) = ∞ and lim
𝑥→∞

𝑔(𝑥) = ∞, then in general we 

cannot say anything about lim
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
. The value of this limit depends on 

the specific functions 𝑓 and 𝑔. 
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16. Let 𝑦 = 𝑓(𝑥) be the solution to the differential equation 
𝑑𝑦

𝑑𝑥
=

arctan (𝑥𝑦) with the initial condition 𝑓(0) = 2. What is the 

approximation of 𝑓(1) if Euler’s method is used, starting at 𝑥 =
0 with a step size of 0.5? 

(A) 1 

(B) 2 

(C) 2 +
𝜋

8
 

(D) 2 +
𝜋

4
 

Solution: Let’s make a table: 

(𝑥, 𝑦)  𝑑𝑥  
𝑑𝑦

𝑑𝑥
  𝑑𝑥 (

𝑑𝑦

𝑑𝑥
) = 𝑑𝑦  (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦)  

(0,2) . 5 0 0 (.5,2) 

(.5,2) . 5 
𝜋

4
 

𝜋

8
 (1,2 +

𝜋

8
)  

From the last entry of the table we see that 𝑓(1) ≈ 2 +
𝜋

8
, choice (C). 

Notes: (1) Euler’s method is a procedure for approximating the solution 
of a differential equation. 

(2) To use Euler’s method we must be given a differential equation   
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), an initial condition 𝑓(𝑥0) = 𝑦0, and a step size 𝑑𝑥. 

In this problem, we have 
𝑑𝑦

𝑑𝑥
= arctan (𝑥𝑦), 𝑓(0) = 2, and 𝑑𝑥 = 0.5. 

(3) The initial condition 𝑓(𝑥0) = 𝑦0 is equivalent to saying that the point 
(𝑥0, 𝑦0) is on the solution curve. 

So in this problem we are given that (0,2) is on the solution curve. 

(4) We can get an approximation to 𝑓(𝑥0 + 𝑑𝑥) by using a table (as 
shown in the above solution) as follows: 

In the first column we put the point (𝑥0, 𝑦0) as given by the initial 
condition. 

In the second column we put the step size 𝑑𝑥.  
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In the third column we plug the point (𝑥0, 𝑦0) into the differential 

equation to get 
𝑑𝑦

𝑑𝑥
. 

In the fourth column we multiply the numbers in the previous two 
columns to get 𝑑𝑦.  

In the fifth column we add 𝑑𝑥 to 𝑥0 and 𝑑𝑦 to 𝑦0 to get the point    
(𝑥0 + 𝑑𝑥, 𝑦0 + 𝑑𝑦). This is equivalent to 𝑓(𝑥0 + 𝑑𝑥) = 𝑦0 + 𝑑𝑦. 

(5) We can now copy the point from the fifth column into the first 
column of the next row, and repeat this procedure to approximate 
𝑓(𝑥0 + 2𝑑𝑥). 

In this problem, since 𝑥0 = 0 and 𝑑𝑥 = 0.5, we have 𝑥0 + 2𝑑𝑥 = 1, and 
so we are finished after the second iteration of the procedure. 

17. The area of the region bounded by the lines 𝑥 = 1, 𝑥 = 4, and 

𝑦 = 0 and the curve 𝑦 = 𝑒3𝑥 is  

(A) 
1

3
𝑒3(𝑒9 − 1) 

(B)  𝑒3(𝑒9 − 1) 

(C)  𝑒12 − 1 

(D) 3𝑒3(𝑒9 − 1) 

Solution: ∫ 𝑒3𝑥
4

1
𝑑𝑥 =

1

3
𝑒3𝑥

 
 |1
4
=

1

3
𝑒12 −

1

3
𝑒3 =

1

3
𝑒3(𝑒9 − 1).  

This is choice (A). 

Notes: (1) To compute the area under the graph of a function that lies 
entirely above the 𝑥-axis (the line 𝑦 = 0) from 𝑥 = 𝑎 to 𝑥 = 𝑏, we 
simply integrate the function from 𝑎 to 𝑏. 

In this problem, the function is 𝑦 = 𝑒3𝑥, 𝑎 = 1, and 𝑏 = 4. 

Note that 𝑒𝑥 > 0 for all 𝑥. So 𝑒3𝑥 > 0 for all 𝑥. It follows that the graph 
of 𝑦 = 𝑒3𝑥 lies entirely above the 𝑥-axis. 

(2) Although it is not needed in this problem, here is a sketch of the area 
we are being asked to find. 
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(3) To evaluate ∫ 𝑒3𝑥𝑑𝑥, we can formally make the substitution 𝑢 = 3𝑥. 
It then follows that 𝑑𝑢 = 3𝑑𝑥.  

We place the 3 next to 𝑑𝑥 where it is needed, and we leave the 
1

3
 

outside of the integral sign as follows: 

∫ 𝑒3𝑥𝑑𝑥 =
1

3
∫ 𝑒3𝑥 ⋅ 3𝑑𝑥  

We now have  

∫ 𝑒3𝑥𝑑𝑥 =
1

3
∫ 𝑒3𝑥 ⋅ 3𝑑𝑥 =

1

3
∫ 𝑒𝑢𝑑𝑢 =

1

3
𝑒𝑢 + 𝐶 =

1

3
𝑒3𝑥 + 𝐶. 

We get the second equality by replacing 3𝑥 by 𝑢, and 3𝑑𝑥 by 𝑑𝑢. 

We get the third equality by the basic integration formula  

∫ 𝑒𝑢𝑑𝑢 = 𝑒𝑢 + 𝐶. 

And we get the rightmost equality by replacing 𝑢 with 3𝑥. 

(4) With a little practice, we can evaluate an integral like this very quickly 
with the following reasoning: The derivative of 3𝑥 is 3. So we artificially 

insert a factor of 3 next to 𝑑𝑥, and 
1

3
 outside the integral sign. Now to 

integrate 3𝑒3𝑥 we simply pretend we are integrating 𝑒𝑥 but as we do it 
we leave the 3𝑥 where it is. This is essentially what was done in the 
above solution.  

Note that the 3 “goes away” because it is the derivative of 3𝑥. We need 
it to be there for everything to work.  
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(5) If we are doing the substitution formally, we can save some time by 
changing the limits of integration. We do this as follows: 

∫ 𝑒3𝑥
4

1
𝑑𝑥 =

1

3
∫ 𝑒3𝑥
4

1
⋅ 3𝑑𝑥 =

1

3
∫ 𝑒𝑢
12

3
𝑑𝑢 = 

1

3
𝑒𝑢
 
 |3
12
=

1

3
𝑒12 −

1

3
𝑒3. 

Notice that the limits 1 and 4 were changed to the limits 3 and 12. We 
made this change using the formula that we chose for the substitution: 
𝑢 = 3𝑥. When 𝑥 = 1, we have 𝑢 = 3(1) = 3. And when 𝑥 = 4, we have 
𝑢 = 3(4) = 12. 

Note that this method has the advantage that we do not have to change 
back to a function of 𝑥 at the end. 

18. Which of the following integrals gives the length of the graph of 

𝑦 = 𝑒3𝑥 between 𝑥 = 1 and x = 2 ?  

(A) ∫ √𝑒6𝑥 + 𝑒3𝑥
2

1
𝑑𝑥 

(B) ∫ √𝑥 + 3𝑒3𝑥
2

1
𝑑𝑥 

(C) ∫ √1 + 3𝑒3𝑥
2

1
𝑑𝑥 

(D) ∫ √1 + 9𝑒6𝑥
2

1
𝑑𝑥 

Solution: 
𝑑𝑦

𝑑𝑥
= 3𝑒3𝑥, so that 1 + (

𝑑𝑦

𝑑𝑥
)
2
= 1 + 9𝑒6𝑥. It follows that the 

desired length is ∫ √1 + 9𝑒6𝑥
2

1
𝑑𝑥, choice (D). 

Notes: (1) The arc length of the differentiable curve with equation     
𝑦 = 𝑓(𝑥) from 𝑥 = 𝑎 to 𝑥 = 𝑏 is  

Arc length = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)
2𝑏

𝑎
𝑑𝑥 

(2) By the chain rule, we have 
𝑑𝑦

𝑑𝑥
= 𝑒3𝑥(3) = 3𝑒3𝑥. See problem 2 for 

details. 

(3) (
𝑑𝑦

𝑑𝑥
)
2
= (3𝑒3𝑥)2 = 32(𝑒3𝑥)2 = 9𝑒3𝑥⋅2 = 9𝑒6𝑥 . See problem 3 for a 

review of the laws of exponents used here. 
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LEVEL 1: LIMITS AND CONTINUITY 
19. lim

𝑥→7

2𝑥2−13𝑥−7

𝑥−7
= 

(A)  ∞ 

(B)   0 

(C)   2 

(D) 15 

Solution 1: lim
𝑥→7

2𝑥2−13𝑥−7

𝑥−7
= lim
𝑥→7

(𝑥−7)(2𝑥+1)

𝑥−7
= lim
𝑥→7

(2𝑥 + 1) 

= 2(7) + 1 = 15. 

This is choice (D). 

Notes: (1) When we try to substitute 7 in for 𝑥 we get the indeterminate 

form 
0

0
. Here is the computation: 

2(7)2−13(7)−7

7−7
=

98−91−7

7−7
=

0

0
. 

This means that we cannot use the method of “plugging in the number” 
to get the answer. So we have to use some other method. 

(2) One algebraic “trick” that works in this case is to factor the 
numerator as 2𝑥2 − 13𝑥 − 7 = (𝑥 − 7)(2𝑥 + 1). Note that one of the 
factors is (𝑥 − 7) which is identical to the factor in the denominator. 
This will always happen when using this “trick.” This makes factoring 
pretty easy in these problems. 

(3) Most important limit theorem: If 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 in some 
interval containing 𝑥 = 𝑐 except possibly at 𝑐 itself, then we have 
lim
𝑥→𝑐

𝑓(𝑥) = lim
𝑥→𝑐

𝑔(𝑥). 

In this problem, our two functions are  

𝑓(𝑥) =
2𝑥2−13𝑥−7

𝑥−7
 and 𝑔(𝑥) = 2𝑥 + 1. 

Note that 𝑓 and 𝑔 agree everywhere except at 𝑥 = 7. Also note that 
𝑓(7) is undefined, whereas 𝑔(7) = 15. 
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(4) To compute a limit, first try to simply plug in the number. This will 
only fail when the result is an indeterminate form. The two basic 

indeterminate forms are 
0

0
 and 

∞

∞
 (the more advanced ones are 0 ⋅ ∞, 

∞−∞, 00, 1∞, and ∞0, but these can always be manipulated into one 
of the two basic forms). 

If an indeterminate form results from plugging in the number, then 
there are two possible options: 

Option 1: Use some algebraic manipulations to create a new function 
that agrees with the original except at the value that is being 
approached, and then use the limit theorem mentioned in note (3). 

This is how we solved the problem above. 

Option 2: Try L'Hôpital's rule (see solution 2 below). 

Solution 2: We use L'Hôpital's rule to get 

lim
𝑥→7

2𝑥2−13𝑥−7

𝑥−7
= lim
𝑥→7

4𝑥−13

1
=4(7) − 13 = 15, choice (D). 

Notes: (1) L'Hôpital's rule says the following: Suppose that 

(i) 𝑔 and 𝑘 are differentiable on some interval containing 𝑐 (except 
possibly at 𝑐 itself). 

(ii) lim
𝑥→𝑐

𝑔(𝑥) =  lim
𝑥→𝑐

𝑘(𝑥) = 0 or lim
𝑥→𝑐

𝑔(𝑥) =  lim
𝑥→𝑐

𝑘(𝑥) = ±∞ 

(iii) lim
𝑥→𝑐

𝑔′(𝑥)

𝑘′(𝑥)
 exists, and 

(iv) 𝑘′(𝑥) ≠ 0 for all 𝑥 in the interval (except possibly at 𝑐 itself). 

Then lim
𝑥→𝑐

𝑔(𝑥)

𝑘(𝑥)
= lim

𝑥→𝑐

𝑔′(𝑥)

𝑘′(𝑥)
 . 

In this problem 𝑔(𝑥) = 2𝑥2 − 13𝑥 − 7 and 𝑘(𝑥) = 𝑥 − 7. 

(2) It is very important that we first check that the expression has the 
correct form before applying L'Hôpital's rule.  

In this problem, note that when we substitute 7 in for 𝑥 in the given 

expression we get 
0

0
 (see note 1 above). So in this case L'Hôpital's rule 

can be applied. 



 

38 

 

20. The graph of the function ℎ is shown in the figure above. Which 

of the following statements about ℎ is true? 

(A) lim
𝑥→𝑎

ℎ(𝑥) = 𝑐 

(B) lim
𝑥→𝑎

ℎ(𝑥) = 𝑑 

(C) lim
𝑥→𝑏

ℎ(𝑥) = 𝑒 

(D) lim
𝑥→𝑏

ℎ(𝑥) = ℎ(𝑏)  

Solution: From the graph we see that lim
𝑥→𝑏

ℎ(𝑥) = 𝑒, choice (C). 

Notes: (1) The open circles on the graph at 𝑎 and 𝑏 indicate that there is 
no point at that location. The darkened circle at 𝑎 indicates ℎ(𝑎) = 𝑑. 

(2) lim
𝑥→𝑎−

ℎ(𝑥) = 𝑐 and lim
𝑥→𝑎+

ℎ(𝑥) = 𝑑. Therefore lim
𝑥→𝑎

ℎ(𝑥) does not 

exist. 

(3) ℎ is not defined at 𝑥 = 𝑏, ie. ℎ(𝑏) does not exist. In particular, ℎ is 
not continuous at 𝑏. So lim

𝑥→𝑏
ℎ(𝑥) ≠ ℎ(𝑏). 

21. What is lim
ℎ→0

tan(
𝜋

4
+ℎ)−tan(

𝜋

4
)
 

ℎ
 ? 

(A) 0 

(B) 1 

(C) 2 

(D) The limit does not exist. 
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Solution 1: If we let 𝑓(𝑥) = tan 𝑥, then 𝑓′(𝑥) = lim
ℎ→0

tan(𝑥+ℎ)−tan(𝑥) 

ℎ
. So  

𝑓′ (
𝜋

4
) = lim

ℎ→0

tan(
𝜋

4
+ℎ)−tan(

𝜋

4
)
 

ℎ
. 

Now, the derivative of tan 𝑥 is sec2 𝑥. So we have  

lim
ℎ→0

tan(
𝜋

4
+ℎ)−tan(

𝜋

4
)
 

ℎ
= 𝑓′ (

𝜋

4
) = sec2(

𝜋

4
) = (√2)

2
= 2. 

This is choice (C). 

Notes: (1) The derivative of the function 𝑓 is defined by 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥) 

ℎ
  

In this problem 𝑓(𝑥) = tan 𝑥, so that 𝑓′(𝑥) = lim
ℎ→0

tan(𝑥+ℎ)−tan(𝑥) 

ℎ
 

(2) See problem 1 for the basic trig derivatives. In particular,  

𝑑

𝑑𝑥
[tan 𝑥] = sec2 𝑥. 

(3) cos (
𝜋

4
) =

1

√2
. Therefore sec (

𝜋

4
) =

1

cos(
𝜋

4
)
= 1 ÷

1

√2
= 1 ⋅ √2 = √2. 

(4) sec2 (
𝜋

4
) = (sec

𝜋

4
)
2
= (√2)

2
= 2. 

Solution 2: We use L'Hôpital's rule to get 

lim
ℎ→0

tan(
𝜋

4
+ℎ)−tan(

𝜋

4
)
 

ℎ
= lim

ℎ→0

sec2(
𝜋

4
+ℎ)

 

1
= sec2 (

𝜋

4
) = (√2)

2
= 2.  

This is choice (C). 

Note: See problem 19 for a detailed description of L'Hôpital's rule. 

22. What is lim
𝑥→∞

5−𝑥2+3𝑥3
 

𝑥3−2𝑥+3
 ? 

(A) 1 

(B) 
5

3
 

(C) 3 

(D) The limit does not exist. 
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Solution: lim
𝑥→∞

5−𝑥2+3𝑥3
 

𝑥3−2𝑥+3
= lim

𝑥→∞

3𝑥3
 

𝑥3
= 3, choice (C). 

Notes: (1) If 𝑝 and 𝑞 are polynomials, then lim
𝑥→∞

𝑝(𝑥)

𝑞(𝑥)
= lim
𝑥→∞

𝑎𝑛𝑥
𝑛

𝑏𝑚𝑥
𝑚 where 

we have 𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 and                
𝑞(𝑥) = 𝑎𝑚𝑥

𝑚 + 𝑎𝑚−1𝑥
𝑚−1 +⋯+ 𝑎1𝑥 + 𝑎0. 

(2) If 𝑛 = 𝑚, then lim
𝑥→∞

𝑎𝑛𝑥
𝑛

𝑏𝑚𝑥
𝑚 =

𝑎𝑛

𝑏𝑚
. 

(3) Combining notes (1) and (2), we could have gotten the answer to this 
problem immediately by simply taking the coefficients of 𝑥3 in the 
numerator and denominator and dividing. 

The coefficient of 𝑥3 in the numerator is 3, and the coefficient of 𝑥3 in 

the denominator is 1. So the final answer is 
3

1
= 3. 

(4) If 𝑛 > 0, then lim
𝑥→∞

1

𝑥𝑛
= 0. 

(5) For a more rigorous solution, we can multiply both the numerator 

and denominator of the fraction by 
1

𝑥3
 to get  

5−𝑥2+3𝑥3
 

𝑥3−2𝑥+3
=

(
1

𝑥3
)

(
1

𝑥3
)
⋅
(5−𝑥2+3𝑥3) 

(𝑥3−2𝑥+3)
=

5

𝑥3
−
1

𝑥
+3

1−
2

𝑥2
+
3

𝑥3

 . 

It follows that lim
𝑥→∞

5−𝑥2+3𝑥3
 

𝑥3−2𝑥+3
=

5 lim
𝑥→∞

(
1

𝑥3
)− lim

𝑥→∞
(
1

𝑥
)+ lim

𝑥→∞
3

lim
𝑥→∞

1−2 lim
𝑥→∞

(
1

𝑥2
)+3 lim

𝑥→∞
(
1

𝑥3
)
=

5⋅0−0+3

1−2⋅0+3⋅0
= 3. 

(6) L'Hôpital's rule can also be used to solve this problem since the limit 

has the form 
∞

∞
: 

lim
𝑥→∞

5−𝑥2+3𝑥3
 

𝑥3−2𝑥+3
= lim

𝑥→∞

−2𝑥+9𝑥2
 

3𝑥2−2
= lim

𝑥→∞

−2+18𝑥  

6𝑥
= lim

𝑥→∞

18 

6
= 3. 

Observe that we applied L'Hôpital's rule three times. Each time we 
differentiated the numerator and denominator with respect to 𝑥 to get 

another expression of the form 
∞

∞
. 

See problem 19 for a detailed description of L'Hôpital's rule. 
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23. lim
ℎ→0

1

ℎ
 ln(

10+ℎ

10
) is equal to 

(A) 
1

10
 

(B) 10 

(C) 𝑒10 

(D) The limit does not exist. 

Solution 1: If we let 𝑓(𝑥) = ln 𝑥, then  

𝑓′(𝑥) = lim
ℎ→0

ln(𝑥+ℎ)−ln(𝑥) 

ℎ
= lim
ℎ→0

1

ℎ
 ln(

𝑥+ℎ

𝑥
). 

So  𝑓′(10) = lim
ℎ→0

1

ℎ
 ln(

10+ℎ

10
). 

Now, the derivative of ln 𝑥 is 
1

𝑥
. So we have  

lim
ℎ→0

1

ℎ
 ln(

10+ℎ

10
) = 𝑓′(10) =

1

10
, choice (A). 

Notes: (1) The derivative of the function 𝑓 is defined by 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥) 

ℎ
  

In this problem 𝑓(𝑥) = ln 𝑥, so that 𝑓′(𝑥) = lim
ℎ→0

ln(𝑥+ℎ)−ln(𝑥) 

ℎ
. 

(2) Recall that ln 𝑎 − ln 𝑏 = ln (
𝑎

𝑏
). So ln(𝑥 + ℎ) − ln(𝑥) = ln (

𝑥+ℎ

𝑥
), 

and therefore 
ln(𝑥+ℎ)−ln(𝑥) 

ℎ
=

1

ℎ
[ln(𝑥 + ℎ) − ln(𝑥)] =

1

ℎ
ln (

𝑥+ℎ

𝑥
). 

(3) See the notes at the end of problem 3 for a review of the laws of 
logarithms. 

Solution 2: We use L'Hôpital's rule to get 

lim
ℎ→0

1

ℎ
 ln(

10+ℎ

10
) = lim

ℎ→0
 
ln(

10+ℎ

10
)

ℎ
= lim

ℎ→0

(
1

10+ℎ
10

)(
1

10
)

1
=

1

10
, choice (A). 

Note: (1) See problem 19 for more information on L'Hôpital's rule. 

(2) To apply L'Hôpital's rule we separately took the derivative of   

𝑔(𝑥) = ln(
10+ℎ

10
) and 𝑘(𝑥) = ℎ. 
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(3) 𝑔(𝑥) = ln(
10+ℎ

10
) is a composition of the functions ln 𝑥 and 

10+ℎ

10
. We 

therefore need to use the Chain Rule to differentiate it.  

The first part of the Chain Rule gives us 
1

10+ℎ

10

.  

For the second part, it may help to rewrite 
10+ℎ

10
 as 

1

10
(10 + ℎ). It is now 

easy to see that the derivative of this expression with respect to ℎ is 
1

10
(0 + 1) =

1

10
. 

24. lim
𝑥→0

 
sin 7𝑥

sin 4𝑥
=  

Solution: lim
𝑥→0

 
sin 7𝑥

sin 4𝑥
 = lim

𝑥→0

7⋅4𝑥 sin 7𝑥

4⋅7𝑥 sin 4𝑥
=

7

4
lim
𝑥→0

sin 7𝑥

7𝑥
⋅

4𝑥

sin 4𝑥
 

=
7

4
( lim
7𝑥→0

sin 7𝑥

7𝑥
)( lim
4𝑥→0

4𝑥

sin 4𝑥
) =

7

4
(lim
𝑢→0

sin𝑢

𝑢
)

1

(lim
𝑣→0

sin𝑣

𝑣 
)
=

7

4
⋅ 1 ⋅

1

1
=

𝟕

𝟒
 . 

Notes: (1) A basic limit worth memorizing is  

lim
𝑥→0

sin𝑥

𝑥
= 1. 

(2) The limit in note (1) is actually very easy to compute using L'Hôpital's 
rule: 

lim
𝑥→0

sin𝑥

𝑥
= lim

𝑥→0

cos𝑥

1
= cos 0 = 1  

(3) It is not hard to see that 𝑥 → 0 if and only if 4𝑥 → 0 if and only if 
7𝑥 → 0. This is why we can replace 𝑥 by 4𝑥 and 7𝑥 in the subscripts of 
the limits above. 

(4) 
sin 7𝑥

sin 4𝑥
 can be rewritten as 

7⋅4𝑥 sin 7𝑥

4⋅7𝑥 sin 4𝑥
 . 

It follows that we can rewrite 
sin 7𝑥

sin 4𝑥
 as 

7

4
⋅
sin 7𝑥

7𝑥
⋅

4𝑥

sin 4𝑥
 . 

(5) Using the substitution 𝑢 = 7𝑥, we have  

lim
7𝑥→0

sin 7𝑥

7𝑥
= lim 
𝑢→0

sin𝑢

𝑢
. 

Using the substitution 𝑣 = 4𝑥, we have  

lim
4𝑥→0

4𝑥

sin 4𝑥
=

1

lim
4𝑥→0

sin4𝑥

4𝑥

=
1

lim 
𝑣→0

sin𝑣

𝑣
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(6) We can also solve this problem using L'Hôpital's rule as follows: 

lim
𝑥→0

 
sin 7𝑥

sin 4𝑥
= lim

𝑥→0
 
7 cos7𝑥

4cos 4𝑥
=

7(1)

4(1)
=

7

4
 .  

25. lim
𝑥→11

 
𝑥

(𝑥−11)2
=  

Solution: The function 𝑓(𝑥) =
𝑥

(𝑥−11)2
 has a vertical asymptote of       

𝑥 = 11.  

If 𝑥 is “near” 11, then 
𝑥

(𝑥−11)2
 is positive. It follows that       

lim
𝑥→11

 
𝑥

(𝑥−11)2
= +∞ .  

Notes: (1) When we substitute 11 in for 𝑥 into f (𝑥) =
𝑥

(𝑥−11)2
 , we get 

11

0
. This is not an indeterminate form. 

For a rational function, the form 
𝑎

0
 where 𝑎 is a nonzero real number 

always indicates that 𝑥 = 𝑎 is a vertical asymptote. This means that at 
least one of lim

𝑥→𝑎−
𝑓(𝑥) or lim

𝑥→𝑎+
𝑓(𝑥) is + or −∞. If both limits agree, 

then lim
𝑥→𝑎

𝑓(𝑥) is the common value. If the two limits disagree, then 

lim
𝑥→𝑎

𝑓(𝑥) does not exist. 

(2) A nice visual way to find the left hand and right hand limits is by 
creating a sign chart. We split up the real line into intervals using the    
𝑥-values where the numerator and the denominator of the fraction are 
zero, and then check the sign of the function in each subinterval formed. 

 

In this case we split up the real line into three pieces. Notice that the 
cutoff points are 0 and 11 because the numerator of the function is zero 
when 𝑥 = 0, and the denominator of the function is zero when 𝑥 = 11.  
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We then plug a real number from each of these three intervals into the 
function to see if the answer is positive or negative. For example, 

𝑓(5) =
5

(5−11)2
> 0. Note that we do not need to finish the 

computation. We only need to know if the answer is positive or 
negative. Since there are + signs on both sides of 𝑥 = 11, we have that 

lim
𝑥→11

 
𝑥

(𝑥−11)2
= +∞. 

(3) We actually do not care about the minus sign to the left of 0. We 
could have left that part out of the sign chart. It is however important 
that we include the zero as a cutoff point. This tells us that we can test 
any value between 0 and 11 to find lim

𝑥→𝑎−
𝑓(𝑥). 

26. Let 𝑓 be the function defined by 

𝑓(𝑥) =

{
 
 

 
 5𝑒𝑥−7

1 + ln|𝑥 − 8|
, 𝑥 ≤ 7

15 cos(𝑥 − 7) 

sin(7 − 𝑥) + 3
,   𝑥 > 7

 

Show that 𝑓 is continuous at 𝑥 = 7. 

Solution:  

lim
𝑥→7−

𝑓(𝑥) =
5𝑒7−7

1+ln|7−8|
=

5𝑒0

1+ln1
=

5

1+0
= 5. 

lim
𝑥→7+

𝑓(𝑥) =
15 cos(7−7) 

sin(7−7)+3
=

15 cos0

sin 0+3
=

15(1)

0+3
=

15

3
= 5. 

So lim
𝑥→7

𝑓(𝑥) = 5. 

Also, 𝑓(7) =
5𝑒7−7

1+ln|7−8|
= 5. So, lim

𝑥→7
𝑓(𝑥) = 𝑓(7). 

It follows that 𝑓 is continuous at 𝑥 = 7. 

LEVEL 1: SERIES  

27. The sum of the infinite geometric series 
5

7
+
15

28
+

45

112
+⋯ is 

Solution: The first term of the geometric series is 𝑎 =
5

7
, and the 

common ratio is 𝑟 =
15

28
÷
5

7
=

15

28
⋅
7

5
=

3

4
. It follows that the sum is 



 

45 

𝑎

1−𝑟
=

5

7

1−
3

4

=
5

7
÷
1

4
=

5

7
⋅
4

1
=

𝟐𝟎

𝟕
. 

Notes: (1) A geometric sequence is a sequence of numbers such that the 
quotient 𝒓 between consecutive terms is constant. The number 𝒓 is 
called the common ratio of the geometric sequence. 

For example, consider the sequence  

5

7
, 
15

28
, 
45

112
,… 

We have 
15

28
÷
5

7
=

15

28
⋅
7

5
=

3

4
 and 

45

112
÷
15

28
=

45

112
⋅
28

15
=

3

4
. It follows that 

the sequence is geometric with common ratio 𝑟 =
3

4
. 

(2) A geometric series is the sum of the terms of a geometric sequence. 
The series in this problem is an infinite geometric series. 

(3) The sum 𝐺 of an infinite geometric series with first term 𝑎 and 
common ratio 𝑟 with −1 < 𝑟 < 1 is  

𝑮  =
𝒂 

𝟏 − 𝒓
 

Note that if the common ratio 𝑟 is greater than 1 or less than −1, then 
the geometric series has no sum. 

(4) As we saw in note (1), we can get the common ratio 𝑟 of a geometric 
series, by dividing any term by the term which precedes it. 

28. Which of the following series converge?  

                  I. ∑
1

𝑛
∞
𝑛=1   

                 II. ∑
𝑛3

2𝑛3+5
∞
𝑛=1   

                III. ∑
cos(𝑛𝜋)

𝑛
∞
𝑛=1  

(A) I only 

(B) II only 

(C) III only 

(D) I and III only 

Solution: The first series is the harmonic series which diverges. 
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lim
𝑛→∞

𝑛3

2𝑛3+5
=

1

2
 and so ∑

𝑛3

2𝑛3+5
∞
𝑛=1  diverges by the divergence test. 

∑
cos(𝑛𝜋)

𝑛
∞
𝑛=1 = ∑

(−1)𝑛

𝑛
 ∞

𝑛=1   

Since (
1

𝑛
) is a decreasing sequence with lim

𝑛→∞

1

𝑛
= 0, the series 

∑
(−1)𝑛

𝑛
 ∞

𝑛=1 converges by the alternating series test. 

So the answer is choice (C).  

Notes: (1) ∑
1

𝑛
∞
𝑛=1 = 1 +

1

2
+
1

3
+
1

4
+⋯ is called the harmonic series. 

This series diverges.  

It is not at all obvious that this series diverges, and one of the reasons 
that it is not obvious is because it diverges so slowly.  

The advanced student might want to show that given any 𝑀 > 0, there 

is a positive integer 𝑘 such that 1 +
1

2
+
1

3
+⋯+

1

𝑘
> 𝑀. This would give 

a proof that the harmonic series diverges. 

(2) The divergence test or 𝒏th term test says: 

(i) if ∑ 𝑎𝑛
∞
𝑛=1  converges, then lim

𝑛→∞
𝑎𝑛 = 0, or equivalently 

(ii) if lim
𝑛→∞

𝑎𝑛 ≠ 0, then ∑ 𝑎𝑛
∞
𝑛=1  diverges. 

Note that statements (i) and (ii) are contrapositives of each other, and 
are therefore logically equivalent.  

It is usually easier to apply the divergence test by using statement (ii). 

In other words, simply check the limit of the underlying sequence of the 
series. If this limit is not zero, then the series diverges. 

In this problem, the limit of the underlying sequence is 
1

2
. Since this is not 

zero, the given series diverges. 

A common mistake is to infer from lim
𝑛→∞

𝑛3

2𝑛3+5
=

1

2
 that the series 

converges to 
1

2
. This is of course not true: the sequence (

𝑛3

2𝑛3+5
) 

converges to 
1

2
, but the corresponding series diverges by the divergence 

test. 
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(3) The converse of the divergence test is false. In other words, if 
lim
𝑛→∞

𝑎𝑛 = 0, it does not necessarily follow that ∑ 𝑎𝑛
∞
𝑛=1  converges. 

Students make this mistake all the time! It is absolutely necessary for 
lim
𝑛→∞

𝑎𝑛 = 0 for the series to have any chance of converging. But it is not 

enough! A simple counterexample is the harmonic series.  

To summarize: (a) if lim
𝑛→∞

𝑎𝑛 ≠ 0, then ∑ 𝑎𝑛
∞
𝑛=1  diverges. 

(b) if lim
𝑛→∞

𝑎𝑛 = 0, then ∑ 𝑎𝑛
∞
𝑛=1  may converge or diverge. 

(4) To see that cos(𝑛𝜋) = (−1)𝑛, first note that cos(0𝜋) = cos 0 = 1. It 
follows that cos(2𝑘𝜋) = cos(0 + 2𝑘𝜋) = 1 for all integers 𝑛, or 
equivalently, cos(𝑛𝜋) = 1 whenever 𝑛 is even. 

Next note that cos(1𝜋) = cos 𝜋 = −1. It then follows that        
cos((2𝑘 + 1)𝜋) = cos(𝜋 + 2𝑘𝜋) = cos 𝜋 = −1 for all integers 𝑛, or 
equivalently, cos(𝑛𝜋) = −1 whenever 𝑛 is odd. 

Finally note that (−1)𝑛 = {
     1  if 𝑛 is even
−1 if 𝑛 is odd

 

(5) An alternating series has one of the forms ∑ (−1)𝑛𝑎𝑛 
∞
𝑛=1  or 

∑ (−1)𝑛+1𝑎𝑛 
∞
𝑛=1 where 𝑎𝑛 > 0 for each positive integer 𝑛. 

For example, the series given in III is an alternating series since it is equal 

to ∑
(−1)𝑛

𝑛
 ∞

𝑛=1 = ∑ (−1)𝑛(
1

𝑛
) ∞

𝑛=1 , and 𝑎𝑛 =
1

𝑛
> 0 for all positive 

integers 𝑛. 

(6) The alternating series test says that if (𝑎𝑛) is a decreasing sequence 
with lim

𝑛→∞
𝑎𝑛 = 0, then the alternating series ∑ (−1)𝑛𝑎𝑛 

∞
𝑛=1 or 

∑ (−1)𝑛+1𝑎𝑛
∞
𝑛=1  converges. 

Since for all positive integers 𝑛, 𝑛 < 𝑛 + 1, it follows that 
1

𝑛
>

1

𝑛+1
, and 

the sequence (
1

𝑛
) is decreasing. Also it is clear that lim

𝑛→∞

1

𝑛
= 0. It follows 

that ∑
(−1)𝑛

𝑛
 ∞

𝑛=1 converges by the alternating series test. 

(7) Another way to check that the sequence (
1

𝑛
) is decreasing is to note 

that 
𝑑

𝑑𝑛
[
1

𝑥
] =

𝑑

𝑑𝑛
[𝑥−1] = −1𝑥−2 = −

1

𝑥2
< 0. So the function 𝑓(𝑥) =

1

𝑥
 is  

a decreasing function, and therefore the sequence (
1

𝑛
) is also 

decreasing. 



 

48 

29. Let 𝑓 be a decreasing function with 𝑓(𝑥) ≥ 0 for all positive 

real numbers 𝑥. If lim
𝑏→∞

∫ 𝑓(𝑥)
𝑏

1
𝑑𝑥 is finite, then which of the 

following must be true? 

(A) ∑ 𝑓(𝑛)∞
𝑛=1  converges  

(B) ∑ 𝑓(𝑛)∞
𝑛=1  diverges  

(C) ∑
1

𝑓(𝑛)
∞
𝑛=1  converges  

(D) ∑
1

𝑓(𝑛)
∞
𝑛=1  diverges  

Solution: By the integral test, ∑ 𝑓(𝑛)∞
𝑛=1  converges, choice (A).   

Notes: (1) The integral test says the following: 

Let 𝑓 be a continuous, positive, decreasing function on [𝑐,∞). Then 

∑ 𝑓(𝑛)∞
𝑛=𝑐  converges if and only if ∫ 𝑓(𝑥)

∞

𝑐
𝑑𝑥 converges. 

(2) ∫ 𝑓(𝑥)
∞

1
𝑑𝑥 = lim

𝑏→∞
∫ 𝑓(𝑥)
𝑏

1
𝑑𝑥. 

(3) The integral test cannot be used to evaluate ∑ 𝑓(𝑛)∞
𝑛=1 . In general 

∑ 𝑓(𝑛)∞
𝑛=1 ≠ ∫ 𝑓(𝑥)

∞

1
𝑑𝑥.  

(4) The condition of 𝑓 decreasing can actually be weakened to 

𝑓 “eventually decreasing.” For example, 𝑓(𝑥) =
ln 𝑥

𝑥
 is not decreasing on 

[1,∞), but is decreasing eventually. This can be verified by using the first 
derivative test. See problem 37 for details on how to apply this test. I 
leave the details to the reader. 

Now, ∫
ln 𝑥

𝑥

∞

1
𝑑𝑥 =

1

2
(ln 𝑥)2

 
 |1
∞
= lim

𝑏→∞
(ln 𝑏)2 = ∞. It follows that 

∫
ln 𝑥

𝑥

∞

1
𝑑𝑥 diverges. By the integral test ∑

ln 𝑛

𝑛
 ∞

𝑛=1 diverges. 

(5) For details on how to integrate ∫
ln 𝑥

𝑥
𝑑𝑥, see the solution to problem 

5. 

 

 

 

 



 

49 

30. Which of the following series converge to −1 ?  

                  I. ∑
3

(−2)𝑛
∞
𝑛=1   

                 II. ∑
1−3𝑛2

3𝑛2+2
∞
𝑛=1   

                III. ∑
1

𝑛(𝑛+1)
∞
𝑛=1  

(A) I only 

(B) II only 

(C) III only 

(D) I and III only 

Solution: The first series is geometric with first term 𝑎 = −
3

2
 and 

common ratio 𝑟 = −
1

2
. So the sum is ∑

3

(−2)𝑛
=

−
3

2

1+
1

2

= −1∞
𝑛=1 . 

lim
𝑛→∞

1−3𝑛2

3𝑛2+2
= −1 and so ∑

1−3𝑛2

3𝑛2+2
∞
𝑛=1  diverges by the divergence test. 

∑
1

𝑛(𝑛+1)
∞
𝑛=1 = ∑ (

1

𝑛
−

1

𝑛+1
) ∞

𝑛=1   

= lim
𝑛→∞

[(1 −
1

2
) + (

1

2
−
1

3
) + ⋯+ (

1

𝑛
−

1

𝑛+1
)] = lim

𝑛→∞
(1 −

1

𝑛+1
) = 1. 

So the answer is choice (A).  

Notes: (1) See problem 27 for more information on infinite geometric 
series. 

(2) For the first series it might help to write out the first few terms: 

∑
3

(−2)𝑛

∞

𝑛=1

= −
3

2
+
3

4
−
3

8
+⋯+

3

(−2)𝑛
+⋯ 

It is now easy to check that the series is geometric by checking the first 

two quotients: 
3

4
÷ (−

3

2
) =

3

4
⋅ (−

2

3
) = −

1

2
, −

3

8
÷
3

4
= −

3

8
⋅
4

3
= −

1

2
. 

So we see that the series is geometric with common ratio 𝑟 = −
1

2
. It is 

also quite clear that the first term is 𝑎 = −
3

2
. 

 



 

50 

(3) A geometric series has the form ∑ 𝑎𝑟𝑛∞
𝑛=0 . In this form, the first term 

is 𝑎 and the common ratio is 𝑟. I wouldn’t get too hung up on this form 
though. Once you recognize that a series is geometric, it’s easy enough 
to just write out the first few terms and find the first term and common 
ratio as we did in note (2) above.  

If we were to put the given series in this precise form it would look like 

this: ∑ (−
3

2
) (−

1

2
)
𝑛

∞
𝑛=0 . But again, this is unnecessary (and confusing). 

(4) See problem 28 for more information on the divergence test. 

(5) The third series is a telescoping sum. We can formally do a partial 

fraction decomposition to see that  ∑
1

𝑛(𝑛+1)
∞
𝑛=1 = ∑ (

1

𝑛
−

1

𝑛+1
) ∞

𝑛=1 . We 

start by writing 
1

𝑛(𝑛+1)
=

𝐴

𝑛
+

𝐵

𝑛+1
. Now multiply each side of this 

equation by 𝑛(𝑛 + 1) to get 1 = 𝐴(𝑛 + 1) + 𝐵𝑛 = 𝐴𝑛 + 𝐴 + 𝐵𝑛. 

So we have 0𝑛 + 1 = (𝐴 + 𝐵)𝑛 + 𝐴. Equating coefficients gives us 𝐴 +
𝐵 = 0 and 𝐴 = 1, from which we also get 𝐵 = −1. 

So 
1

𝑛(𝑛+1)
=

𝐴

𝑛
+

𝐵

𝑛+1
=

1

𝑛
+
(−1)

𝑛+1
=

1

𝑛
−

1

𝑛+1
. 

(6) Another way to find 𝐴 and 𝐵 in the equation 1 = 𝐴(𝑛 + 1) + 𝐵𝑛 is 
to substitute in specific values for 𝑛. Two good choices are 𝑛 = 0 and 
𝑛 = −1. 

𝑛 = 0: 1 = 𝐴(0 + 1) + 𝐵(0) = 𝐴. So 𝐴 = 1. 

𝑛 = −1: 1 = 𝐴(−1 + 1) + 𝐵(−1). So 1 = −𝐵, and 𝐵 = −1. 

31. Which of the following series diverge?  

                  I. ∑
𝑒𝑛

𝑛2+1
∞
𝑛=1   

                 II. ∑ (
99

100
)𝑛∞

𝑛=1   

                III. ∑
2𝑛

𝑛!
∞
𝑛=1  

(A) I only 

(B) II only 

(C) III only 

(D) I and III only 
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Solution: lim
𝑛→∞

𝑒𝑛

𝑛2+1
= ∞ and so ∑

𝑒𝑛

𝑛2+1
∞
𝑛=1  diverges by the divergence 

test. 

∑ (
99

100
)𝑛∞

𝑛=1  is geometric with common ratio 𝑟 =
99

100
< 1, and  so 

∑ (
99

100
)𝑛∞

𝑛=1  converges. 

lim
𝑛→∞

|

2𝑛+1

(𝑛+1)!

2𝑛

𝑛!

| = lim
𝑛→∞

|
2𝑛+1

(𝑛+1)!
⋅
𝑛!

2𝑛
| = lim

𝑛→∞

2

𝑛+1
= 0 < 1, and so ∑

2𝑛

𝑛!
∞
𝑛=1  

converges by the ratio test. 

Therefore the answer is choice (A). 

Notes: (1) See problems 27 and 30 for more information on infinite 
geometric series, and see problem 28 for more information on the 
divergence test. 

(2) We say that the series ∑ 𝑎𝑛
∞
𝑛=0  converges absolutely if ∑ |𝑎𝑛|

∞
𝑛=0  

converges. If a series converges absolutely, then it converges.  

A series which is convergent, but not absolutely convergent is said to 
converge conditionally. 

(3) The Ratio Test: For the series ∑ 𝑎𝑛
∞
𝑛=0 , define 𝐿 = lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
|. 

If 𝐿 < 1, then the series converges absolutely, and therefore converges. 
If 𝐿 > 1, then the series diverges. If 𝐿 = 1, then the ratio test fails. 

For the series ∑
2𝑛

𝑛!
∞
𝑛=1  given in this problem, we have 𝑎𝑛 =

2𝑛

𝑛!
, and so 

𝑎𝑛+1 =
2𝑛+1

(𝑛+1)!
. 

32. What are all values of 𝑥 for which the series ∑
5𝑛𝑥𝑛

𝑛
∞
𝑛=1  

converges?  

(A) All 𝑥 except 𝑥 = 0 

(B) |𝑥| <
1

5
 

(C) −
1

5
≤ 𝑥 <

1

5
 

(D) −
1

5
≤ 𝑥 ≤

1

5
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Solution: lim
𝑛→∞

|

5𝑛+1𝑥𝑛+1

(𝑛+1)

5𝑛𝑥𝑛

𝑛

| = lim
𝑛→∞

|
5𝑛+1𝑥𝑛+1

𝑛+1
⋅

𝑛

5𝑛𝑥𝑛
| = 5|𝑥|. So by the ratio 

test, the series converges for all 𝑥 such that 5|𝑥| < 1, or equivalently 

|𝑥| <
1

5
. Removing the absolute values gives −

1

5
< 𝑥 <

1

5
 . 

We still need to check the endpoints. When 𝑥 =
1

5
, we get the divergent 

harmonic series ∑
1

𝑛
∞
𝑛=1 , and when 𝑥 = −

1

5
we get the convergent 

alternating series ∑ (−1)𝑛
1

𝑛
∞
𝑛=1 . So the series diverges at 𝑥 =

1

5
and 

converges at 𝑥 = −
1

5
. 

The answer is therefore choice (C). 

Notes: (1) A power series about 𝑥 = 0 is a series of the form ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 .
To determine where a power series converges we use the ratio test. In 
other words, we compute  

𝐿 = lim
𝑛→∞

|
𝑎𝑛+1𝑥

𝑛+1

𝑎𝑛𝑥
𝑛 | = lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| |𝑥|. 
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